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ABSTRACT {

<" The minimum information approach to active control of struc-
tural systems seeks inherently robust designs by use of mean-
square optimization conjoined with a stochastic system model
which presumes as little as possible regarding « priori informa-

. tion on modal parameter statistics. This report extends earlier
results for the regulator problem to the case of full-order
. dynamic compensation with aonsingular observation noise. Opti-

mality conditions along with sufficient conditions for existence
and uniqueness of solutions and for closed-loop stochastic
stability are presented. Results concerning asymptotic proper-

- ties for large uncertainty levels are also given. Numerical
results for various simple examples indicate improved robustness
properties over standard LQG designs and suggest the possibility
that, under the minimum information stochastic approach, the
burden of design computation may be reduced to that associated
with the relatively well known or "coherent” modes.
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MEAN-SQUARE OPTIMAL, FULL-ORDER COMPENSATION OF
STRUCTURAL SYSTEMS WITH UNCERTAIN PARAMETERS

1. INTRODUCTION

Many techniques advanced for the active control of highly
flexible structural systems implicitly assume the existence of
a large order "verification" model in which the values of struc-
tural parameters are precisely known. Where the critically

important issue of parameter uncertainties (arising from inher-
ent limitations in the analysis of high order structural modes)
is specifically addressed within a computationally tractable
approach, the formulation entails either (a) an essentially
geometric (in the linear algebraic sense) approach to sensitiv-
ity reduction,* (b) ad hoc combination of inherently robust con-
trols with more standard LQ design techniques** and/or (c) the

a posteriori verification of robustness by use of methods

entirely extrinsic to the design process.+

In contrast, it may be argued that although verification
models are precise, they are necessarily false; that the struc-
ture must be regarded as a stochastically parametered mechani-
cal system (for which limited a priori statistical data is
unavailable); and that design optimization must proceed from a

measure of performance defined over the entire parameter

* For example, the work of Sesak [1l,2] as reinterpreted by
Coradetti [3] actually involves static decoupling of sensitivity
derivatives and/or modal coordinates for model order reduction.
** e.g., the rate-output feedback of Balas [4] or low-authority
control of Aubrun [5] would be charged with the control of high-
order, poorly-known modes while providing enhanced stabilization
of a "high authority" LQ control designed for a reduced order
model of the low frequency modes.

t Using, for example, general multivariable measures of robust-
ness along the lines of Ref. [6].
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statistical ensemble. Very recently, such a stochastic design
approach was outlined and specifically elaborated for the special
case of full state feedback regulation of structural systems with
a priori uncertainties in the modal frequencies [7,8].

‘Entailing, as it does, a fundamental revision of the tradi-
tional, deterministic approach to dynamical modelling, the ear-
lier developments [7-9] must be reviewed here. To retain the
spirit of linear-quadratic optimization, we choose as the per-
formance measure the average of a quadratic functional of state
and controls over the parameter ensemble. Secondly, as a com-
plete empirical specification of parameter statistics is never
provided in practice, the design approach must accept the kind
of severely limited statistical data that is actually available.
To avoid ad hoc assumptions, the full probability assignment
required for determination of the mean-square optimal control
must be consistent with the data on hand but maximally unpre-
sumptive with regard to unavailable data. This is accomplished
by resort to a maximum entropy principle (Jaynes' principle).

Furthermore, to achieve particular simplicity and design
conservatism, we acknowledge as "available" the minimum possible
a priori statistical data needed to induce a complete probabil-
ity assignment while preserving fidelity of the overall model at
high levels of uncertainty (or for high order modes).

Thus, the approach is "minimum information" in two respects--
first, because we acknowledge as available the bare minimum of
a priori data and, secondly, because we induce a full probabil-
ity model from this acknowledged data by use of a minimum infor-
mation (i.e., maximum entropy) principle.

The resulting probabilistic description induced by this
essential data constitutes our fundamental system model and pre-
sumes as little parameter information as possible.
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.....
......
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With uncertainties only in the open loop frequencies, we
identified the minimum data set by examining the phenomenology
of frequency uncertainties as reflected in the mean (the par-
ameter ensemble averaged) response, the covariance matrix and
the "expected cost" matrix (i.e., the covariance of the co-state).
The principal effects of modal frequency uncertainty are the
introduction of a spurious damping (the "decorrelation damping")
into the mean response and the suppression of cross-correlation
among distinct modes. Essential to the proper modelling of such
qualitative features are the decorrelation damping time con-
stants, termed the "modal decorrelation times". These are gen-
erally inversely proportional to modal frequency standard devia-
tions and constitute fundamental, albeit unconventional, measures
of frequency uncertainty.

Acknowledgement of only the mean (or nominal) values of
modal frequencies and the modal decorrelation times as available
data induces a white parameter statistical model which reduces
the optimization problem to solution of a modified Riccati
equation (the "stochastic Riccati equation") for the expected
cost matrix. Under mild restrictions, this possesses a unique
positive semi-definite solution which guarantees closed-loop
stochastic stability. Thus the proposed approach reduces the
need for design iteration to achieve robust stability.

The most significant aspect of the stochastic Riccati
equation is the character of its steady-state solutions for
large uncertainties [9]. If the uncertainties in all open-loop
frequencies increase without bound (i.e., all decorrelation
times approach zero) the expected cost reduces to a diagonal
matrix whose elements are independent of modal frequency statis-
tics and are given by simple analytical expressions. This
asymptotic solution gives rise to a velocity feedback control law
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which is stable regardless of the values of modal frequencies or
damping ratios. Thus a greater degree of robustness is obtained

than was originally sought.

In the more typical case in which the frequencies of low
order structural modes are relatively well known while modelling
accuracy deteriorates for the high-order modes, the stochastic
Riccati equation automatically produces a velocity feedback con-
trol (of the asymptotic form) for the high-order, poorly-known
modes. At the same time, for low-order modes having small uncer-
tainties, the control closely resembles the deterministic plant
solution. In other words, a "high authority"”, essentially deter-
ministic control for well-known modes and a "low authority"
velocity feedback control for relatively uncertain modes natu-
rally emerge as limiting regimes of a jlobal control law which
is guaranteed to be stable over the parameter ensemble.

This general behavior has immediate consequences for the
computational effort required for high order systems. 1In brief,
the computational burden required for determination of the con-
trol gain is mainly associated with the relatively few wedl-known
("coherent”) modes. Provided that the dimension of the coherent
system is moderate, the stochastic Riccati equation is amenable
to numerical solution of acceptable accuracy for systems of
arbitrary order.

The above qualitative features provide strong motivation for
extension of the formulation to linear, dynamic compensation.
Here we consider a structural system as described by a finite
number of its "all-elastic" normal modes with uncertainties in
the open-loop frequencies. We remove, however, the restriction
of previous work to full-state feedback and consider dynamic out-
put feedback compensation. Chapter 2 sets forth the minimum
information stochastic modelling approach and derives the
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stochastic Lyapunov equation which must be appended to the mean-
square optimization problem as a constraint. Various properties
of this equation are related to closed-loop stochastic stability
and the existence of steady state, constant gain controls. 1In
Chapter 3 we specialize to full-order dynamic compensation, and
derive explicit stationary conditions. Existence and uniqueness
of solutions to these conditions as well as their asymptotic
properties for large levels of modal frequency uncertainty are
explored. Chapter 4 concludes by a presentation of computational
procedures and various numerical examples. From these theoreti-
cal developments and supporting numerical results, it will be
seen that the desirable features of the stochastic design approach
as applied to full-state feedback regulation are indeed retained

in this less idealized setting.
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2. THE MINIMUM INFORMATION FORMULATION OF THE OPTIMIZATION
PROBLEM

2.1 Problem Statement

As in the previous work (7], we consider the control of a
linear elastic structure subject to small deformations and no
rigid body degrees of freedom. Modifications needed to include
rigid body modes are straightforward and need not be treated in
this initial development. Retaining n normal mode coordinates
in the system model, the state-space form of the equations of
motion may be written:

x = (A + a(t))x + Bul + Wy

n=c:<+w7z2 (1)

R2nx2n R2nx9. L P

4 ER’, neR

>
m

, B €

where x is the vector of modal coordinates and velocities with
its odd indexed elements representing modal displacements and
the adjacent even indexed elements giving the corresponding
modal velocities. w; is a white disturbance noise with inten-
sity V1 2 0, uy the control input and B the input map:

....................

T TR T . -~




0 o0 ... 0|
br1 P2 --- By
B = 0 0 0 (2)
byy Py - Py
R :

where the non-zero elements are proportional to the normal mode
shapes at & actuator locations. 1 is the vector of sensor out-
puts with output map C and observation noise, 52. We assume
that 52 is independent of wy and has a nonsingular intensity
matrix Vo

X is the nominal or mean value of the system map:

_ 4 0 1
A = block-diag [ -2 _ (3)
k=1,...,n -y -anmk

k'
modal frequencies and the N, are the modal damping ratios

where the k=1,...,n are the nominal design values of the

representing inherent structural damping. It is assumed
throughout that:

0 <m <<1 ; k=1,...,n (4)
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Finally, a(t) is the random portion (assumed zero mean) of the
system map representing possible statistical variation of the
modal frequencies.

As a preliminary step, it is convenient to express the
above relations in the eigen-basis of A. 1In view of the assump-

i tion of small damping we may simplify this process by introduc-
;é ing the resonant approximation for A:
=3

LIS SIS N P

X (5)

=Ny Wy 1 ]
™ BAL "3

A = block-diag [
k=1l,...,n

Ay % e 00
it ] . O

j

WA

..1...1.-

so-called because the difference between damped and undamped
natural frequencies is neglected. With this replacement, the F

24

eigenvector matrix of A is:

bt P

1 1l
¢ = block-diag | _ ] (6)

k=1l,...,n iw, -iak

2" .
Bl n )

‘s
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(XN

Then, defining:
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: TN Sl )
: = diag {Gl(i-nl) ,Bl(-i-nl),...,mn(i-nn) ,?u‘n(-i-nn)} a.
& vity & ¢ lay b.
8 4 41p c.
] 7
Wy = ¢ Wy d.
A -1 -1H
-~ vy £ v, 0 e.
Y A c?d £.
x the equations of motion written in terms of the state-space
2 modal coordinate vector:
g
'u’.
.i
: £ & 571l y (8)
X
4
{ assumne the form:
'; 9 ~
: E = uf + B u1 + w1 a.
¥
L, n = yE + ;2 b. (9)
:ﬁ u 4 u o+ v(t) c.
P

Furthermore, we suppose that a priori uncertainty exists

only in the open-loop frequencies so that:
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v(t) = diag {iIm (Ek) 8, () } (10)
k=1l,...,2n

where Im(...) denotes the imaginary part. The Gk(t), k=1l,...,2n,
are assumed real valued, zero-mean, stationary random processes
in time and statistically independent of Gl and Gz.

Obviously, a general treatment would require that all sys-
tem maps be random. However, the above restriction offers an
appropriately simple point of departure and permits relatively
easy interpretation. Moreover, as will ultimately be seen, the
very special problem considered here still exhibits important
features.

With the above restrictions, suppose the control to be pro-
vided by interconnection of (9) with a fixed order dynamic com-
pensator. Specifically, the controlled system equations take

the form:
d ~ 2n
§ = ug + Bu + Wy EeC a.
N % {1l)
q = ag + u, : 9qeC q b.
where
u, 2 -Kq
u, 4 ¢y | (12)

n = vE + ;2

10




i 1R

i
. »
- A-‘A"“-‘-

. .vw -
ARLNL TN i

%001

LAV by

’

Rk

r's)

£l

2 O] - A . >
LY s, { 753

G A ote

3-b 3.4

SIRAKY

it S

S VR LE AL 0

ARS8 IR

e

Yt S YA o

W
KRR
R )
P

Y

L arlL il g gl sndh st Sl el Al g St 4 . eI A A A4 —w, bt it gie b St e A i andh dhud S ST AN B aith aulh aitn e =adl 2P adhuy . i
............... R e e N T T i P "]

w v 0
Intensity (~1) = [ 1 I i vy 20,vy,>0 (13)

and where'q is the compensator state and «,f are the control

gains.

As a measure of performance of system (1ll), we take the
quadratic functional:

t
_ 1 H H
J = E fto dt (¢ rlg + Uy RZuI]] a.
Ry >0 , € gAx2 b.
R > (14)
A LH
Ry 20, ¢ g2nx2n 4. /

where the averaging operation includes the parameter ensemble
(i.e., in this case the ensemble of the Gk(t)). Note that term-
inal state weighting is ignored in (14) since its inclusion
would entail only superficial modification of the following
results.

The problem is to determine k and £ in (12) (with appro-
priate choice of a) to minimize J. It is expeditious, at this
point to recast this problem in terms of the augmented state:

13 2n+N
xé()scq (15)

11
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in which case (11) through (14) become:

. 51 H .,
min: J = E[ft dt X R'X] (16)
,f,a o
X = [A' 4+ v' ~F'] X + W(t) (17)
where
w
wie) & ( ,}) (18)
fw2
and
v oo
Al A [- ] ac \
L 0 a
v(t) 0
v. é b.
0 0
0 Bk
pr & W c. > (19
-fy 0
w 4[N OH d.
L O fv2£ ]
R' Q rl ° T e.J
0 KHRzKJ

Finally, after straightforward manipulation, we can
restate the optimization problem in terms of the augmented
co-state matrix as follows:

12
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[
[
bi
&
p s
A
. _ t, _
min: J = ¢tr ft dt P' (t) v!' (20)
g ,£,a o
i
' = E[P'] € c(2n+Nq)x(2n+Nq) a.
g -13' = [R' + V' -F']H P' + P'[R' + V' =F'] + R' b. (21)
] —
2 where the averaging in (2l.a) now extends only over the parameter
ensemble. The quantity P' (which we term the expected cost
. matrix) is the covariance of the augmented co-state and gives a
j direct measure of mean-square performance by virtue of (20).
From the assumptions made concerning W(t), the disturbance
2 noise is a differential process (with unbounded variation) and
3 care is needed in the precise specification of the meaning of
ﬁ (17). Such a specification should also allow the parameter
. noise, v', to be a differential process. To answer this need,
3 we shall take (17) to mean the truth with probability one of the
é equality:
vl
,;:
- b
s Foh(e) [-ax(t) + [A'-F'1X(t)dt + dv' ()X + dW(t)] = 0 (22.a)
A
:
< ) for all t, sac< b < t, and any continuous matrix function, h(t);
< where the above stochastic integrals are interpreted according to
b
5 Stratonovich [10,11] and Wong and Zakai [12]:
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on(t) av' () X(t) =

1.L.n. Tht,) [v' () =v'(t;_ 1)1 D8(X(L) + X(t5_1))] (22.b)
€+ 1

where {tk} is a partition of the interval [a,b] and

4
€ = mzx (ti -ti_l) »
(23)

o€ 185 p0%]

Interpretation (22) is the appropriate one for our applica-
tion since, in writing (17) we have in mind a mechanical system
whose parameters are perturbed by a noise of finite total power.
Adopting the more familiar Ito differential for (17) would
ignore this fact. However, in the case in which v' is white,
(22) yields results corresponding to a bandpass parameter noise
in the limit as the passband approaches infinity.

Thus, with (22), v' may be treated as a process of bounded
variation (almost everywhere) and we may state various formal
results for the system response in terms of the transition
matrix of (A' -F' + V') as follows:

Theorem 1

Suppose that v'(t) is a stationary zero mean random matrix
process. Define an increment in the nonstationary process W' by:

Wity ta) 2 Weits) W' (eq) & ft2 dt v' (1) ; t, 2 (24
1+ t2 2 V) = e ATV sty 2y )
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and assume that W'(tl,tz) possesses joint moments of all orders
for all finite t,-t,. Further, suppose that F'(t) is bounded
and continuous. Then under interpretation (22) and in a prob-
ability-one sense:

A. The transition matrix, ¢'(t,t), for system (1l7) is given by:

¢'(t,'l') = z ¢'(tlT) H t=2rT ae. w
k=0 k
where
oo (t,1) = exp [A' (t-17) + W' (T,t)] b.
. _ k t T1 Tx-1 > (25)
op(t, 1) = (-1) IT dt, fT de...IT dt,
(k>0)
X [¢é(t,T1) F'(Tl)¢é(tl,12) F'(15) ...

cee b (T 10T) Frlt)eg (T, )] c. J

and where the integrals are the usual Riemann-Stieltjes sums and
extend over the left semi-closed intervals.

B. ¢'(t, 1) is almost everywhere continuous and its first and
second moments are continuous and differentiable in both

arguments.

C. Egs. (21.b,c) possess the unique, positive semi-definite
solution:

15




P'(t)

where, for 1t 2 t,

vit, 1)
y(t,1)

D.

v, L ENNL,DI;

ft dar y(t, 1) ; t ¢ [to,tll

< 1-t:

o' B (t+6,t) P(t+8,T) ¢'(t+6,t)

R' (1)

ferentiable in t and r.

The above are entirely analogous to the results of Theorem 1

of [7] and the proof may be omitted here.

In the case in which v' is a differential process, we have

an alternative formulation.

system (17) possesses the I1to differential:

d x'(t)

I’ =

where XI'

= (A' -F'(t) + &I') X(t) 4t

+ dv'(t) X(t) + aw(t)

lim + E[W' 2 (¢, t+A) ]
AYO

is the so-called Stratonovich correction.

t € [to,tll is continuous and dif-

In such a case, by virtue of (22),

(26)

(27)
b.

(28)




2.2 The Minimum Information Model - Derivation of the
Stochastic Lyapunov Equation

As may be seen from Theorem 1, a complete specification of
the statistical structure of open-loop frequency deviations per-
mits explicit determination of P'. However, a complete proba-
bility model of the parameters based upon empirical determina-
tions can never be provided in practice and we are faced with
limited available data on parameter statistics. To induce a
complete probability model uniquely from the available data we
define the desired probability assignment as the one which, under
the constraints imposed by available data, is maximally noncom-
ittal with regard to unavailable data, i.e., maximizes the

entropy of the underlying processes.

More specifically, we may introduce measures of information
reposed in the statistics of relative deviations of modal fre-
quencies in the following way. First, note that only increments
in the non-stationary processes 6k(0,t): defined by

t
A - s 2
. (29)

t, 2 t

2 k=l,...,2n

1 H

actually enter into (26) and (27) and thus need to be considered.
Define'{ték)} as an arbitrary division of the real line with

m = 0,1,...,Nk; Nk finite and k € ¥ where ¥ comprises a set of
distinct integers in the range 1 to 2n. For notational conven-
ience let'{tékEN)} be the totality of such divisions. Then a

k

measure of informatioc. contained in the finite set of

increments:

.......
...........
.......

............
......................
...........................
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(k)
6k(to 'tl

k), 5 (&8 (k) (k)

is given by the relative entropy of these increments.

)

I8 {£{*M )] 3 ;4o p[c;{téks”)}l 1n p(8: {£{*M 1 (31)
K X K

T WA X AT

where dg is the volume element in the sample space of (30) and

P[G;{téken)}] is the joint probability density of the increments
(30). X
for the stochastic system as a whole, the measures (31) defined

Although it is possible to define a measure of entropy

"

directly on the Gk(tl,tz) will suffice for present purposes.

Now in practice, we may suppose that specific numerical

B b A L h e Al

values may be assigned to various statistics of the Gk(tl,tz)
(defined as functionals of P[B;{tékEN)}]) based on empirical
determinations. This constitutes k the "available data" of the
problem. To avoid ad hoc assumptions on the probability distri-

e e Y 7

butions of frequency uncertainties, we choose P[6;{tékEN)}] to
maximize a measure of our ignorance of the incrementsk(30) in
the light of the available data. In other words, given con-
straints on P[Gi{tékEN)}] implied by the available data, we
determine k P[éi{téREN)}] to maximize H[G;{tékem)}] of

(31) for all choices of ¥, Nt and {ték) ;M€ [O,Nk], k k € N}.

The idea of employing a statistical model which is maxi-

8 CACAT RSO

3 mally unpresumptive with regard to parameter data can be carried
still further. We may choose to acknowledge as available a data
; set which is essential to the proper modelling of open-loop
statistical response and is just sufficient to induce a well-
defined probability assignment via a maximum entropy principle.

—— —
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- The discussion of section (3) of [13] established various quali-
tative features of the open-loop system response (in particular
the mean, covariance and expected cost), and introduced the con-
cepts of "decorrelation damping", "coherence limit" and "incoher-
e ent range". It was concluded that, at the very least, any
approximating probability model of the Gk(o,t);k=l,...,2n should
preserve the time scales of decorrelation damping, provide a cor-
rect estimate of the coherence limit and satisfy the bound given
by (19.b) of [13] for the cross-correlations of high order modes.
This is possible only if the "modal decorrelation times", Tk:

s we
PEPE LIS

,q“"‘ pOCo

- -1
(|Im(u,) |T,) \

i

=
w

|

":. -t -“4“<2 ' aed

>

) . - t 2
fo dt|E [exp iIm(uy) fo dt 6k(T)]|
> (32)

RO T
L“!L..AL~L—

¥
~
)

l1,...,2n

2m = Top-1 7 M5 lsee.m

"‘J E .
)

()

are admitted as fundamental data. 1In essence, numerical values
assigned to the Tk establish the scales of frequency deviations

relative to the remaining time scales of the problem.

LI Py

w3l

‘2 Thus, we propose to acknowledge only the Tk(k=l,...,2n) as
:3 . the "available" data. It remains to determine the probability
ﬁ assignment which maximizes the entropy (31) for all », Nk’

j {ték): m ¢ [0,Nk], keN} subject to the constraints implied by
. (32). We term the resulting probability model the "maximum

i entropy probability assignment induced by the data" (32).

2 Here we repeat the answer to this problem given in Theorem
¥ 3 of [7]):

L d

:
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Theorem 2

Assuming that the processes (29) possess finite variances
for all tl,t2 €(0,~) and stationary increments, the maximum
entropy probability assignment induced by (32) is the one under
which the Gk(o,t);k=l,...,2n are independent Wiener-Levy pro-
cesses with intensities Ik/mN(k):

2

E[Gk

(33)

Izm = IZm-l ; m = 1,...,1’1

It must be noted that if the available data encompasses
more than specification of the decorrelation times, the result-
ing maximum values of the information measures (31) are smaller
than the values corresponding to the above probability assign-
ment. On the other hand, if the available data omits some of
the decorrelation times, a maximum entropy probability #asign-
ment for which (29) possess finite variances for finit= t does
not exist. This arises because (31) monotonically increases
with the noise intensities so that, loosely speaking, the maxi-
mum entrop} model involves white noise of unbounded intensity.
Thus, in this sense, the decorrelation times constitute the min-
imum data required to induce any "reasonable"” maximum entropy
probability assignment.

Most importantly, the Gk(t) are modelled as white noise so
that posterior learning is impossible and the stochastic control
problem is nondual. In consequence, the white parameter uncer-
tainty model provides a worst case situation from the point of
view of parameter identification. 1Indeed the model may be used

20




S R oM e e e R R M M A SO E A S |

%
;:
\*!
N
N
o
T
.'\. 3 * .
[ to determine performance degradation due to parameter uncertainty
=N and to assess the need for identification and adaptive algorithms.
Al
& With this maximally unpresumptive statistical model we are
i in a position to determine a single closed equation for P' and
‘ restate the optimization problem as follows:
%y
:% Theorem 3
T Under the maximum entropy statistical model induced by the
" decorrelation times as given in Theorem 2 and F'(t) bounded and
Zf continuous in t rfto,tl], the variational problem of (20) and
2 (21) becomes:
4
7:, — tl _
b min: J = ft dt tr[pP'V'] (34)
o ,f,a o
5
, where P' is the unique, hermitian, positive semi-definite solu-
PR .
Q tion of:
&
¥y
_ Pt = [(R-F'-R0 )T B 4 BUR-F'-NI'] 4+ R+ I'(B')
? (35)
» X =
":j
o where
I 0
- 2 [ ] a.
» 0 0
s (36)
- A . — — -
3. I = Jdiag [wlIl, wlIl""’wnIn' wnIn] b.
N
i
-
N
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and where, for any square matrix, M:

>

{M} diag [Mkk] (37)
k

Proof

With the statistical model of Theorem 3, and the definition
(22) of stochastic integrals, the results of Theorem 1l may be
used. 1In particular, (18) yields:

w(t, 1) o' H(t+s,t) V(t+s,T) o' (t+6,t) a.
(38)

P(t+s,1) o'H(T,t+8) R' (1) ¢'(T,t+6) b.

where 6§ > 0. Equation (25) shows that ¢'(t+§,t) depends upon
ck(tl,tz) only for tl,tz ge(t,t+6], while ¢'(t1,t+§) depends upon
Gk(tl,tz) only for tl,t2 e[t,t+8). Since these intervals are
disjoint and the increments of Gk(o,t) are independent, the
ensemble average of (37.a) becomes:

vit, 1) E[o' T (t+6t) T(t+6, 1) o' (£46,8)] (39)

where

>

V(t,1) Elv(t, 1))

22
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Now examine (25). Keeping in mind that 1) the ¢és appear-
ing in the integrals of (25.c) are each dependent on increments
of the Gk(o,t) over mutually disjoint intervals, 2) that partial
sums of (25.a) are almost everywhere convergent, and 3) the
Gk(O,t) are Gaussian with variances (33), it is seen that the
contribution of kZ2 ¢i(t+6,t) to ¢'(t+6,t) produces terms of
order 5% on the right side of (39).

Equation (39) may thus be written:

t+4
ft

.ﬂj(t,'l') = E[(¢c',(t+6,t) - dTld)é(t""(SITl)F'(Tl)¢é(Tl,t))H

t+6

x TAers,T) (§1(E+8,8) =S58 OaT 02 (£46,TIF' (17) 02 (1) ,£)) ]

+ 0(s2)

Similarly, using the expression (25.b) for the ¢6S appearing

above, we have:

e, = ET F(ers, 1) A1 + 0(5%)

t+6

4
t

MR RS+ w e, tr8) + 32, te8) s % (1)

After expanding out, rearranging and dividing by 6:

23
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-1 Grers,n e, 01

= (B -F'(0) + 5 B P (e, eee) DP Tiees, D)
_ - 1 2
+ P(t+s,T) (A* -F'(t) + 35 E{W'T(t,t+68)])

+ ']é' E[W'H(t,t-l-G) P+, 1) W' (t,t+8)] + 0(8)

Next use Theorem 3 to evaluate the above averages, then
pass to the limit 6+0. Recalling that g% V(t,t) exists by

Theorem 1.D, we obtain:

- & VL, 1) = (B -F'(t) -5 " B, 0

(40.a)
+ Plt, 1) (R -F'(t) =KI') + I'{Y(t, 1)}
with I given as in (36). Also, (27.b) yields directly:
y(t,7) = R'(7) (40.b)

Finally, integration of all terms in (40) over t e[t,tll and
use of (26) gives (35).

The linearity of this equation guarantees the uniqueness
of the solution, and the positive-semidefiniteness of P'(t)
noted in Theorem 1.C implies the same property for P'(t). a
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Under the maximum entropy statistical model we thus obtain
a modified Lyapunov equation for P' which must be appended to
the variational problem as a constraint. Clearly as the decor-
relation times approach infinity, the matrix I' approaches zero
and (35) reduces to the familiar Lyapunov equation for a deter-
ministic plant. Note that (35) could have been shown by pro-
ceeding directly from the ito differential, (28). However, the
method of the above proof illustrates the simplicity and unity
afforded by the formalism of Theorem 1.

2,3 Stochastic Stability and the Steady State Case

Because of the relative ease with which constant gain con-
trols may be implemented, we hence forth consider only the steady
state case and suppose that k,f and a are time-independent. As
a preliminary step, we first consider stochastic stability and
introduce "equivalent coefficient matrices" in the sense of
Kleinman [14]. 1In the following, the equivalent coefficient
matrix of P' in (35), for ~ ample, will be denoted by:

b5, (R =F' %) BB (R -F' -k1") + I'{P')]

or more simply by AF' whenever clarity permits. By definition,
the limit of P' as t; approaches infinity exists if and only if
AF' is exponentially stable. When this is so, we term «,f and
a admissible controls. Note that the equivalent coefficient
matrix, b5 og the covariance of X (which is adjoint to P') is
simply A?" Thus admissible controls imply second mean
stability (for a discussion of this and related concepts of

stochastic stability see [15]).

More precisely, we have the result (see Ref. [16] or [17]).
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' Lemma 1

ﬁ Consider:

N
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N

2 A = A"A AR+ ITAY+ S, toelt,,t]

: (41)

3 A(tl) = A

3 with S 2 0 (S < 0). If AA[AHA + AA + I'{A}] is asymptotically

é stable,

% lim A(t) = A

3 tl+oo
where A  exists as the unique positive semi-definite (negative
semi-definite) solution to:

. 0 = aA_+ A A+ (A} +s (42)

i In consequence, under admissible controls, the steady state

L J

, performance:

¥

- I, s lim 3/t |

. |£y-t | 4=

¥

exists and assumes the form:

: )
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Es = tr[P'vV') (43)

where P' is a positive semi-definite solution of:

0 = [& -F' -x1"13 B 4+ B (R -F' -KI']
(44)
+ R' + I'{P'}

We now consider (43) and (44). Preparatory to determina-
tion of the optimal control gains we note the following results:

Lemma 2

Let §[...] denote the first variation of [...] consequent
upon variations in «,f and o subject to the admissibility condi-
tion and (44). Then the stationary condition:

§[T_.1 = 0 (45)

determines .a minimum of 35.

Proof

The condition for extremalization of 35 requires that
§[P'] vanish. Consequently, the second variation of P' may

be computed from (44) as:

27
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R ' B 2 =, 2 PIYIIRY ' ’
0 = [Ab -Fo ~HI']" §°[P'] + 67 [P ][AO -Fo S 748

 — 0 0
+ I'{8°[(P*]} + H
0 §{«k] RZG[KI

where X; and Fé denote A' and F' evaluated with a,x and f as
determined in accordance with (45). Since 6[K]HR26[K] 2 0 and
A62[F'] is asymptotically stable, §2(7'] is positive semi-
definite by Lemma 1. Since V' 2 0, the second variation of 35
is non-negative. 0

In the following, we shall concentrate on the derivation
of the stationary conditions, i.e., the conditions imposed on
a,< and £ by the requirements:

- |
GIJS] = 0 a. )
= A —
J_ = tr(P'Vv'] b.
s > (46)
0 = [A' -F' -!sr']H P' + P'[A' -F' =KkI'] ’
c. J
+ R' + I'{P'}
{

Subsequently, at least for the case of full order compensation,

(Nq = 2n), the conditions under which A3, is asymptotically
stable will be established.
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3. THE MEAN-SQUARE OPTIMAL FULL-ORDER COMPENSATOR

3.1 Derivation of the Stationary Conditions

Here and in the remainder of this report we consider the
cagse of full-order dynamic compensation for which Nq = 2n in
(46) . Leaving aside the question of admissibility for the
moment, let us now derive the stationary condition (46.a).

To handle the constraint imposed by (46.c) most expedi-
tiously, we introduce the hermitian multiplier matrix,
Q' ¢ C4nx4n and form the Hamiltonian:

>

tr[P'V' + ([&' -P' -%7'18 B' 4+ B (&' -F' -5kI']
(47)
+ R' + I'{P'})Q"]

Then (46.a) reduces to the requirement that the first variation
of H consequent upon unrestricted variation in a,x,f and P!
vanish. Partitioning P' thus:

P P
B 8 [ 2 Eq] (48)
H
P )4
€q q

with similar notation for Q', we obtain the following specific

conditions:

29




S g
o .

[
LR

LA ]
STV RVE

LA S B

“

X

A e R “;' L el el il '-.- -
BATM A e B e AR AL S A LA AL DTS ARSI IMCAIDMEA AR K

(49)

%g = [A'-F'-%1'10' + Q' [K'-F'-%1'1% + ' (0"} + V' a.
PI
= 0

oH _ _H ' -

3 = 2[-8 (PEQEq + quoq) + R2KQq] 0 b.
oH _ H H H =

3F = 2](quQE + Pngq) Y o+ quv2] 0 c.
oH _ ., . H -

7e = 2[pgqggq + Pqu], 0 d.

From (49.a), Q' can now be identified as the covariance of
the augmented state. Furthermore, it is easily checked that by
virtue of (46.c) and (49.a,b,c), (49.d) is an identity. This
manifests the well-known result that the stationary conditions
furnish no determination of the compensator dynamic matrix, a.
Indeed it is fortunate that we may choose o so as to simplify
(46.c) and (49) very greatly.

In preparation for the main result, define the state trans-
formation:

(50)

so that E is the observation error if we view the compensator
as a full-order observer. Noting that

30
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B' = Tl B q
(51)
Q' = Tg 7"
partition P, and § in accordance with (48):
P P
P = [ £ Eq]
P
Eq q
Finally, with the notation:
Vg = M ~kT (52)
we have:
Theorem 4
With the above definitions and the choice:
@ = u -8k -fy (53)
the specifications:
31
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£q = 0 a. }
(54)
~ ~H
Qq ng b.
and
K = Rzl gH 55 a.
} (55)
_ o= H -1 :
£f = Qq YV, b.

e (= _anH 3 s = _ H Y
0 = (u,-8k) PE + Pg(um BK) + r; + K Ryk + I{PE+ Pq}
e T LR ~ — . H = ~ H H
0 = (v, BK)QE + Qp (upy=Br) ™ + BKQq + Qg B (56)
+lI{Q§} + vy
0 = (um—fy) Pq + Pq(um-fy) + K R,K
(57)
0 = (um-fy)Qq + Qq(um-fy) + I{Qg} + vy + fv,f
identically satisfy the stationary conditions (46.c) and (49).
The proof is given in Appendix 1.
With the choice (53), system (17) assumes the form:
é = uf -Bxg + ;1 a.
} (58)

q = W g -Bkq + £y(E-q) + fw, b.

A W L. A Ay L‘\_L'\'L*‘L‘L‘J
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{ so that the compensator structure is as shown in Figure 1.

;3 Furthermore, referring to (28), the mean value of £ is seen

b}

g to satisfy:

'}:

P

‘_i £ = Hm £ =Bkq

3

R

0} A
e~ Thus, it is clear from (58.b) that with o chosen as in (53), the
& compensator is a full-order observer of the mean state.

=

! It is also evident that under (53), Egs. (55), (56) and (57)
i% comprise the only essential stationary conditions. Introducing
i further notation:

‘.

<o

L

A

% p & F,

¥ p & 5

p-. q

% (59)
: A

Q Qq

N ~ A~ ~

.: Q - Qg -Qq

o

~ 1

o

o

- o & BREl gt

j (60)
N 5 4 yHegly

X

(]

y slight rearrangement of (55) through (57) yields the following

Y stationary conditions:
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( Corollary 1

ﬁ With the full-order compensator form given in (53.b), the
% gains:

»

& « = R;tgle

2 (61)
a} £f = QYH v;l

%E where P, Q, P, Q =z 0 satisfy:

- 0 = IR P+P1 + I{P + P} + r, ~P 0 P a.

o m m 1 )

» (62)
3 0 = W Q+QTl+Ifg+Ql+v, 0750 b f
R m m 1 *

ﬁ; — HH P + 7 (5 -

.% 0 = (u, =Q o) P (u, -0 o) + P oP a.

-, _ _- A A_- H —

| 0 = (u, -0P) Q+0Q (W -0P)" +Q0Q b.

3

'54 yield an extremum for the steady-state performance, 35.

-

ol The particularly simple form of (62) and (63) is to be

}: noted. Observe that in the deterministic plant case (I = 0),

E? (62) form the only restrictions and reduce to the familiar

S uncoupled regulator and observer Riccati equations. Also in

:: the absence of the terms I{P} and 1{Q}, (62) are of the form

25 of the stochastic Riccati equation arising from the regulator

- problem treated earlier. 1In general, however, (62.a) and (62.b)
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are coupled through I{S} and I{a} so that the effects of modal
frequency uncertainties preclude the separation principle. Also
the coupling terms effectively augment the diagonal elements of
r, andvvl, thereby demanding greater Eontro} authority and
stabilization. Moreover, from (63), P and Q tend to increase

with the controller input KHRZK and its dual fHsz‘

We may say that P and Q represent error "leaking through"
the regulator to the observer and vice-versa by virtue of param-
eter uncertainty.

To summarize, we consolidate the above results and simplify
the requisite conditions for admissibility of the controls:

Theorem 5

Suppose that P, Q, P, Q exist as positive semi-definite
solutions to (62) and (63). Then with constant gains given by
(61) : '

A. (Fm -fy) , (u -£Y) , (Fm -Bk) and

(0 -Bk) are asymptotically stable.

B. The stochastic system (58) is second mean exponen-
tially stable and almost surely exponentially stable,
i.e., the control is admissible.

c. Eq. (61) yield a minimum of the steady state per-
formance, 38.

The proof is given in Appendix 2.
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At this point, it is well to recapitulate the above develop-
ments, indicating where the derivation is subject to significant
generalization.. First, we chose to treat the problem of mean-
square optimal dynamic compensation of structural systems with
uncertainties in the open loop frequencies within the dual form-
ulation, involving the augmented co-state or expected cost matrix.
This gives rise to the statement embodied in Egs. (20) and (21)
which is applicable to any statistical model of parameter uncer-
tainties. Next we imposed the minimum information statistical
model of frequency uncertainties to obtain the variational prob-
lem of Eq. (46) which involves a variational constraint imposed
by the stochastic Lyapunov equation for the expected cost. Treat-
ment of less restricted types of parameter uncertainty would pro-
ceed analogously to obtain an appropriately generalized stochas-
tic Lyapunov equation.

Assuming admissibility of the controls, and specializing to
the steady state, full-order case, we derived the optimality con-
ditions associated with the variational problem of Egs. (46).
Choice of the compensator as a full-order observer for the mean
state is found to permit great simplification of these conditions
resulting in Egs. (61) through (63). Clearly, the case of time-
varying controls may be handled in a similar manner. Moreover,
we may anticipate that assuming gq ¢ CNQ, Nq < 2n and proceeding
as in this section, the optimality conditions for reduced-order

dynamic compansation may be derived. Once again, judicious
choice of the compensator dynamic matrix, o, will result in
drastic simplification and yield appropriately modified versions
of Egs. (61), (62) and (63).

Finally, Theorem 5 shows that existence of positive semi-
definite solutions to the optimality conditions, Egs. (62) and
(63), guarantees the minimum property and second mean and almost
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sure exponential stability for the closed loop system. Thus the

new approach to full-order compensation holds the promise of
ensuring robust stability under a design-conservative statisti-
cal model of parameter uncertainties. The issues of existence

and uniqueness are immediately addressed in the following section.

3.2 Existence and Uniqueness of Solutions to the
Optimality Conditions

The results of this section represent an extension of the
earlier work on full state feedback requlation to the more gen-
eral problem posed by Egs. (62) and (63). As in the classic
work of Wonham (17,18], or the developments of Merriam [16], the
basic technique is to establish the existence of bounded mono-
tone sequences of positive semi-definite hermitian maps. 1In
this connection the following result is essential [19]:

Lemma 3

Every sequence,'{xi}, of hermitian positive semi-definite
matrices bounded below (above, resp.) with (xi+1 -xi) negative
semi-definite (positive semi-definite, resp.) for each i con-
verges to a positive semi-definite limit.

In addition, we shall need a preliminary lemma on the
familiar Lyapunov equation [16,20].

Lemma 4

Consider:

AlpsrPra+s = o (64)

38
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{% A. If S 2 0 (< 0, resp.) and A is stable, (64) has a

oy unique solution P, and P 2 0 (< 0, resp.). If, in

& addition (Sg, A) is reconstructible, P > 0 (< 0, resp.).
5

- B. Suppose P 2 0 (< 0, resp.), S 2 0 (£ 0, resp.) satisfy
i (64) and (s¥, A) is detectable. Then A is stable.

fﬁ With regard to stochastic Lyapunov equations of the form:

oy

<

3 0 = a'p + P A+ (P} +s (65)
3

- we can state [14]:

il

‘% Lemma 5

“( If AP[AH P+ PA+ I{P}] is asymptotically stable and S 2 0
;4 (< 0, resp.) then the unique solution of (65) is positive (nega-
i tive, resp.) semi-definite.

,

5 Finally, we must recapitulate earlier results for the

“ stochastic Riccati eguation of the regulator problem [7]:

= Lemma 6

7 —_—

Td .

- Consider:

o4

N

&

o 0 = A p+op + I{P} +r -Pp o P

S m P

& N . (66)
5 Am = A -kT

~!
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where r 2 0 and I and o are as defined by (36.b) and (60.a).
Under the conditions:

(A, o&) stabilizable

(ra, A) detectable

(66) possesses a unique positive semi-definite solution P, and
(A -oP), (A -%I -oP) and AP[Ag P+ PA + I{P}] are asymptoti-
cally stable. Moreover, suppose that Pl and P2 are the solu-
tions of (66) with r = r, and r = r,, respectively. Then
r; 2 r, implies P; 2 P,.

The dualization of Lemmas 4, 5 and 6 is immediate and need
not be considered explicitly.

To simplify this initial development, attention is hence-
forth restricted to the case:

(u, 0&) , (u, vlk) controllable

] ¥

(rl y W), (T2, W) reconstructible

although, as subsequent numerical results suggest, it is likely
that these conditions can be weakened considerably.

Within the above restrictions, consider the sequences
Peo Qi Py and Q defined by:
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P, + Piu + I, + I{Pi} -P, O P, + I{Pi} a.

o
]

—H
um

(67)
-— _H -— ~ }
0 = MpQq + Qi + vy 4 I{Qi} --Qi o Qi + I{Qi} b.

_ ~ — _ -— — _ — H ~
0 = Pi+1(um Qio) + (um Qic) P.,1 * P, 0P, a.
} (68)
~ — H a— A —
0 = Q,,y(uy -0Py) " + (uy -0P;) Q.. +Q; 00Q; b

for all i =2 0. The following results on the boundedness of these
sequences is essential.

Theorem 6
Under the conditions stated above, there exist bounded,

positive definite Pu, Pz, Pu, Pz, Qu, Qz, Qu, Qz with

such that:

L4+ I
fl
o>
-
0>
1]
0>

(69)

in conjunction with (67) and (68) implies:
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p* <P, <Y, Q"<QisQ

\ (iﬁ -oPy) , (ﬁh -Q; o) stable

and for i and

L

2 for i 2 1.

‘ The proof is contained in Appendix 3.

Cl

: This prepares the way for the main conclusion:

Theorem 7

With ﬁﬁ, I, ry, v; o and o as defined previously and the

L

conditions:
% (w, 0%) . (u, vlk) controllable
- (rlk, w o, (3%, W) reconstructible

Egqs. (62) and (63) possess unique positive definite solutions
for P, P, Q and Q. Moreover, (ﬁh -oP) and (ﬁh -Qo) are
asymptotically stable.
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Proof

First, let us stipulate that Po and Q° be chosen in accord-

ir Q4

and Qi as defined by (67) and (68) are positive definite and

ance with (69) and Theorem 6. Then, for all i 2 0, Pi' P

(w, -oP;) and (um -Qio) are asymptotically stable.

Defining:
A ~ -A
Zp; = Pi41 TPy
(70)
A ~ —/\
Zoi = Q44 79y
and
A -
Ipi = Pig1 7B
(71)
.. 4 o .. -9
Qi i+l i

manipulation of (67) and (68) yields
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. R (72.a)
- [p.£ G+ 0% P.] +P, .0 + I oPp
0 = z, (W, -opi)H + (G -0P,) 2, -I, I,
i i i-1 i-1 (72.b)
- [Q.% o +0 3% Q.1 + L 0 Q. +0Q.0 2
1P Pjaa it Q;. 1 105,
and
0 = (1 -op)¥ . + 1. (T -op,)
m i P P, m i
i i
+ I{:z +2,}-Z_ o01L a.
Pi Pi . Pi Pi
(73)

Now suppose ZP 2 0 and ZQ s 0. Considering (73.a),
it is clear that sifcd U, -OP4 isistable, (u, -oPi_l,ok) and
((riz, })k, ﬁh ~OP;_,) are stabilizable and detectable,
respecil&ely. Then, by Lemma 6, I, =~ exists as the unique
positive semi-definite solution of i-1 (73.a). Similarly, from
(73.b), Lemma 6, and the assumption ZQ. s 0; ¢ is negative

Q.
semi-definite. i-1 i-1
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Since -Qi < I < 0 and g =2 0, use of (68.a) and Lemma 4

Q.
~ l-l A
shows that [P, I G+ 0L P.] is negative semi-definite.
105 Q11
Similarly [Pi_lo Xpi—l + zPi-lc Pi-1] > 0 so that the second

line of (72.a) is positive semi-definite. Consequently, since

(ﬁh -QiE) is stable, ZP is the unique positive semi-definite
i

solution of (72.a) by virtue of Lemma 4.A. Analogous reasoning

on (72.b) shows that 2 < 0.

Q.
i
Thus, on the assumption that Z 2 0 and 2 < 0, we
Pi-1 Qi-1
have shown that ZP 2 0, ZQ <0, ZP 2 0 and ZQ < 0.
i-1 i-1 i-1 i-1
Induction on i shows:
p, + Zp 20
i i
X y Z <0
Qi Qi

A

for all i provided that P1 -P 2 0 and Q. -Q_ = 0. Under the

Ehoicg (691 this must be so, for by Theorem 6, Pl > PT = Po and
0, < Q" =0q_. '

Thus (67), (68) and (69) define P. and ;i as positive defi-
nite nondecreasing sequences and Qi and Qi as positive definite
non-increasing sequences. Moreover, by Theorem 6, these seguences
are bounded both from above andAfrom below; Therefore Lemma 3
implies that the sequences Pi’ Pi' Qi and Qi possess positive
definite limits, which by virtue of (67) and (68) satisfy (62)

and (63).
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Furthermore, (ﬁh -oP.) and (i -Q.E) are asymptotically

stable so that lim (i -oP;) and lim (um -QiE) are also stable.

it . A ilte
Fxnally, since lim P, and lim Q, exist the results of Lemma 6
ite 1 ite 1

immediately apply to (67). Thus buth § -oP and u -Qo are
asymptotically stable.

A

To establlsh uniqueness, suppose that (Pl, 1’ Ql' Ql) and
(P ’ PZ' QZ' Qz) are two sets of positive definite solutions of

. A A -
(62) and (63). With 21 = Pl -P2 and ZP = Pl =Py, (62.a) may be
manipulated to yield:
0 = (o -oP )% I+ L (. =~oP,) + I{I.}
m 2 P P''m 2 P
+ I{ZP} -ZPG ZP (74.a)
and
= rr H -
0 = (um OP;) " Ip + Zp(um oP;) + I{ZP}
+ I{zp} + zpo ZP (74.))

Employing the same reasoning as used in the Appendix for

- deriving bounds on P, it is readily seen that I{ZP} < I,0 I,.

Thus, since Ay in (74.a) is asymptotically stable, ZP is nega-
tive semi-defihite by (74.a) and Lemma 5. Likewise, (74.b)

implies ZP
dgfinite, we cgnclgde that ZP = 0. Similarly, Q; = Q. Finally,
(P1 -Pz) and (QlA-Qz)Aare fognd te satisfy the homogeneous forms

of (63), whence P1 = P2 and Ql = Qz. 0

2 0. Since Ip is both positive and negative semi-
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(‘ As is clear from the above proof, (67), (68) and (69) give
‘?‘ a computatiogal procedure for the numerical solution of (62) and

(63) . When Pl and Qu are evaluated in accordance with Egs.
(A.3.1) through (A.3.4) of the Appendix, monotone convergence jis

ESREY,

"l

guaranteed (with P, P, non-decreasing and Qi' Q; non-increasing).
It is interesting to note that if the conditions:

y p_ =2 , g, =0
2
)
ﬁ: are taken in place of (69), slight modification of the above
2 proof again shows convergence of (67) and (68), but with P, Ei
X non-increasing and Qi' Qi non-decreasing.
_g Theorem 5 is now directly applicable. Thus it is possible
é to summarize definite conclusions with regard to stochastic
stability as follows: )
é Corollary 2
‘j Under the conditions of Theorem 7, let P, Q, ; and 6 be the
. unique positive definite solutions of (62) and (63). Then with
13 the constant gains given by (61):
i
;f A. (iﬁ -8x), (u -Bk), (Eﬁ -fy) and (p -fy) are asymp-
o totically stable.
ﬁ B. The stochastic system (58) is second mean exponen-

tially stable and almost surely exponentially stable.

c. ~ 3+ (61l) minimizes the steady state performance index
> defined by (43).
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Thus, under the minimum information model of modal frequency
uncertainties, the compensator design approach embodied in Egs.
(61) through (63) minimizes a measure of performance defined over
the entire parameter ensemble and guarantees closed loop stochas-

tic stability.

3.3 Asymptotic Properties for Large Uncertainties

The previous section established the existence and unique-
ness of solutions to (62) and (63) under the controlability and
reconstructability conditions of Theorem 7 and for all positive
I. It is thus natural to inquire what behavior P and Q attain
for large uncertainties, i.e., for very small decorrelation times.
This case represents the situation in which very great a priori
uncertainty exists regarding the values of all modal frequencies.

In connection with the stochastic Riccati equation, Theorem
16 of Ref. [17] immediately yields the following:

Lemma 7

Assume the conditions of Theorem 7. Let P and Q be the
unique positive definite solutions of (62) given any positive
semi-definite 5 and a. Introduce a positive scaling parameter,
J, into I:

I = 3T ; 3>0,71>0 (75)

Then:
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lim P = p*
J4w (76)

lim Q = Q*
J teo

where the diagonal matrices P* and Q* are uniquely determined by:

0 = EH P* + P* | + I{p} +'{r1} - {P*}2 {o}

(77)

o
]

—_ —H A . 2 —_
uo* + Q* y + I{Ql + {vl} - {9*}° {o}

This result readily leads to the main conclusion

Theorem 8

Let P and Q be the unique positive definite solutions of
(62) and (63) under the conditions of Theorem 7 and define I as
in (75). Then:

>

lim P = p* & (-2 ReD ™! (r;)
J e (78)

lim Q = Q¥* (-2 Rep) =1 {v,}
J peo “

>

Proof

By Theorem 7, ; and 6 exist as positive definite solutions
of (62) and (63) for all I 2 0 and therefore possess bounded
limits 5* and 6*, respectively, as J increases without bound.
Then (77) yields:

49




0 = Wer+p* T+ IR} + (r)) -p*? {0}

(79)
e

0 = JuQ* + Q* + I{Q*} +'{vl} -Q*2 {o}

Furthermore, since I > 0, ((P o P)%,I) is reconstructible
and (I,(Q o Q)&) is controllable for all P, Q > 0. Then (63.a)
gives:

e*} & 1im ®} = I limn @ o P}
J 4o J 4o (80.a)
= 1! (p*}? {0}
Similarly, from (63.b):
0*1 & 1m0} = 1! (0*)? @) (80.b)
J 4o
and (78) follows by substitution of (80) into (79). 0

Thus, as modal frequency uncertainties increase without.
bound, the optimality conditions possess very simple asymptotic
solutions given by closed analytical expressions. Referring to
Theorem 16 of Ref. [7] it must be noted that for the full state
feedback regulation problem, diagonalization of the expected
cost matrix gives rise to a rate feedback control law which is
inherently stable for all values of modal frequencies. Thus
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| c* & 1im ¢ = R;lBH p*

( J4
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A

'h implies that only the estimated modal valocities are used as

o control input.

S In this case, it is also of interest to investigate more

_% ’ particularly the asymptotic form of the control law for large I.
% For this purpose, suppose that Us E, and ; are the modal par-

- ameters for a particular realization of the structure as distinct
! from the nominal or design values, u, B and y. Then the system
ﬁ equations for the actual structure in connection with the

g designed compensator are:

‘1 . ~ ~

;-; E = uwEg-Bkagq . a.

E»! _ } (81)
* a = (g, -8x -fy) g + £ Y £ b.

q

g Now as I > 0 increases, the compensator poles recede into the

left half plane owing to the term -%I in ﬁh. Thus, for large I
we may consider a singular perturbation expansion for q as a

2 functional of £. In the first approximation - i.e., to first

X order in 1°1;

-

)

" -l . = -2

7 q ~ 2T f* vy £+ 0(1I %) (82)
3

: where f£* é lim £. Then, to first order, in singular perturba-
N tions, the J'&ontrolled system is given by:




' [ ~ —1 =
= E = Tg-25@ 1o o
.;\‘
e 5 & rylef (83)
Ry
R
W
%
3 from (82) and (8l.a).
To zeroth order, (83) shows that large uncertainties tend
a to remove the control altogether. However, to first order we
o,
e have the following property:

Lemma 8

Consider (83) with P* and Q* as given by (78). If y = B,
Yy = BH, and vy = vR2 (where v is a positive scalar) then (83) is
asymptotically stable for all 1 with Rey < 0 and all B, and the
control is a rate output feedback law.

’y

"..

v

*? Proof

3 — A H

Iy Let £ = £° £. Then, from (83):

f.

} . H

T = 2 -

- g g€ [Reg -T] &

o (84)
i r & Ser 1ty G+ G (e r7lom S

N

- ~ _ oH H \ =~

o In the case vy = 8, vy = 8§ and v, = VR, we have o = vo soO
ﬁj that T is hermitian. Further, since P* I'IQ* is positive and

& diagonal, T 2 0. Then, with Reu <0, £ <0 for all § # 0. Thus,
X £ is a Lyapunov function. That this case represents a rate

.-1 52
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output feedback law is easily verified by transforming (83) back
to the modal coordinate basis in accordance with relations (7)
and (87). a

In other words, for large modal frequency uncertainties and
co~-located rate sensors (7 = EH, Y = BH), the asymptotic control
is a rate feedback law proposed by Balas [4] which is stable in
the presence of errors in all modal parameters.

Analogous results are to be expected when uncertainties in
low frequency modes are small while modelling accuracy degener-
ates for modes of increasing order. 1In this instance we antici-
pate that the control designed according to Egs. (61) through
(63) will necessarily uapproach the asymptotic form for the high
frequency, poorly known modes, while resembling the determinis-
tic plant compensator design for the low order modes.
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4. FULL-ORDER COMPENSATION: NUMERICAL PROCEDURES & RESULTS

f 4.1 Computational Methods

3 For computational purposes it is advantageous to work with
(61l) through (63) in the original modal coordinate basis rather
than in the complex form given above. Letting:

L ¥h

I ~
' B 4 ¢lHpgml | p & glHpe-l
i . (85)
; g & ¢q o , 0 & pqof
;
and
; ~ A -1
§ q = ¢q
§ 1
A
! P~ oot
b
Y
{
: system (17) assumes the form
,é
¢
: x = (& + a(t))x -BKq + Wy
/ (87)
ﬁ q = (R -%I)g -BKq + F C(x -q) + F ;2
;
q
; Using (5) through (8), (l4.c) and (85), relations (61)
0 through (63) become (we shall suppress the tildes of B, Q, etc.
A in (85)):
i
!
i
§ 54
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» 0 (A -0 f)Tp+P(Km

‘.1 — A ~ -—
Y| 0 = (A -IP)Q+ QA

where:

>
aI
>
>
[
Ny
~

AT TR
s BN U]

ne>
]

=

-3

VANOAN
o
"
0
=
dﬁ
[
0

and where for any square matrix, M:

o,

a

,,31

,’*

A

TSI

e

55

- = 2T S
- 0 = K Q+QA +D,[I, Q+0Q]l +V)

-IP) +QTITO

P+P Kﬁ + DplI, P+ P] + R -PLP

-QITQ

Q) +PLILP

A A A .t




v
A a L e

ST e mTeTNaT e e E 8 ey

_ [— R
Ik -2 wi 0
D, [I,M] = block-diag | —I[M,, _ _q + WM ]
p I, k=1,...,n |25, 2k-1,2k-1 K2k, 2k 7| 0 g
A E 1 o]
-D.[I,M] = block-diag -T-[w M _ - + M ] _
Q k=1,...,n |28 k 2k-1,2k-1 2k, 2k o wi

......

(92)

We also note, for future reference, that the asymptotic

solution,
P* = Dblock-diag 1_3
k=1l,...,n _4nkwk
!
Q* = block-diag —3
k=l,...,n _4nkwk

(78) , for large uncertainty levels becomes:

2]
-2 we 0
(R, + w Ry ]
_2 1 o0
[w, V + Vv ]
k' lok-1,2k-1  lo2x,2k |0 @

in the modal coordinate basis.

(93)

With the above expressions, the discussion of computational
techniques may proceed.
gives rise to a convergent sequence of approximations to P, Q,
P, 6 and yields the following algorithm:

Theorem 9

First, note that the proof of

Theorem 7

Under the conditions of Theorem 7 and denoting the positive
definite solutions of (89) and (90) by P, P, Q and Q:
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3
’ ]](-11: (Pki Pk' le Qk) = (P, P, Q, Q) (94)

where the sequences {Pk},‘{Pk}, {Qk} and {Qk} are defined
(for k = 0,...,%) by:

o
:‘ -T — A
2} 0—I\mPk+PkAm+R1+DP[I,Pk+Pk]-PkXPk
! (95)
o o= =T N
fé Q = Am Qk + Qk Am + v1 + DQ[I, Qk + Qk] Qk z Qk
i
33
" _ ~ - _ _ — _ - T A
7 0 = Ppyy Ay -0 2+ (A -0 2)7 Ppoy + Py IRy
(96)
< _ X = T — ~ -
1 0 = Oy By =ER)" + (By =F Py) Qppy + Qe 20y
¥,
; with either:
4
p = pt 0 U (97
o ’ QO = Q )
or
~~ | p, = 2 , o = o (98)
3
y iy A ALY “a . oy
Py Furthermore, P~, Q7, P~ and Q  are defined as the positive
=7 definite solutions of
A
2
P
¢
A
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xS
f N -
- u - =T _u u u

R 0 = P A +A P +P LP a.
e = T pu u u , puy _pu u
N ] Kmp + P Xm+R1+DP[I,p +P] -PLP b.

~“u =T = fu u < .u >
.:.‘: 0 = Am+AmQ + Q L Q C.
£ ~ _
% 0 = R, Q"+ Q" A, + vy +Dylz, o° + Q"1 Q" T " a.
_ bz _.u = U TT 3%, p o5 o
- o-P(AmQ'Z)+(Am-Q D"pP +P L P a.
- _ =P % L = L £ L
o8 0 = A P +P A 4R +D,[I, PP] -P" L P b.
EE 0o = o*@_-reMT + (& -z e o'+ o' T Q! c.
o

= L 2 =T L L = 4

0 = A, Q +Q A +V, + DP[I' Q7] -7z Q d.
»
%
3
o The proof is immediate from that of Theorem 7 and use of
K2 the transformations (7), (8), (85) and (86).
-g The above computational scheme requires at each step, the
- solution of Lyapunov equations, standard Riccati equations and
o stochastic Riccati equations of the form considered in [7].
::33 This is obviously the case for (95), (96) and (100). To see
;ﬂ that, at most, solution of stochastic Riccati equations is re-
2 quired for computation of the starting values, consider (99).
¥ Setting P, s P + PY, addition of (99.a) and (99.b) produces
%) the stochastic Riccati equation:
58
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‘,. 0 = Ps Am + Am Ps + Rl + DP[I' Ps] (101)
N

iﬁ This defines Ps > 0 uniquely, and (99.b) may be written

3?? _ =T _u u % u u

0 = A P +P A + Ry + DI, P]-P IP (102)
'f, Thus, PY is the unique positive definite solution of an ordinary
.:ﬁ Riccati equation. Finally, solution of the Lyapunov equation

j%% (99.a) yields PY. an analogous scheme may be used for determi-

- nation of Qu and Qu from (99.c,d).

:f; ¢

Pd
Oa % hala

Although convergence of the sequences defined by (95)
through (100) is assured, the numerical procedure involves
stochastic Riccati equations at each step, and these, in turn,

.y

bs &%

demand an iterative method of solution.

»:‘ In place of the above rather cumbersome method of solution

Oud we may introduce a much more direct iterative method based upon

- the following computational sequence (k = 0, 1, 2,...):

N 0 = (& -z P) P x

X = By K Prel ¥ Prar By I P YRy a.

‘ A

?? + DP[I, P+ Pk] + Py z Pk (103)

T

i 0 = By =T POy + OBy IR~ + 0 TQ b
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T

0 = (Ay =Q 2)Qu,y + Qy (Ay =0y 27 + 7y a.
* .
+ DQ[I, Qe + Q) + 0 T 0o (104)
= (R nT e p. .. (& T b
. 0 = Ry =0 D)7 Pyyy + Pray(Bp =9 2 + P 2B b
g
y
with starting values defined by:
P = Q = 0 (105)

} (106)

Ko, + ooxT +v, -0, TQ, = 0

" Note that (103) and (104) entail only the solution of
Lyapunov equations. Because of its evident convenience, this

A b chosio e 0 S I Tt L Y R o L S AT S s
o
Q
-
o
(o]

approach, in preference to that of Theorem 9, has been imple-
mented computationally. Although proot of convergence remains

A

the object of investigation, the sequence defined by (103)
through (106) have been found to be convergent in all numerical

RN

studies performed to date.

In the specific implementation of (103) through (106) used
to obtain the numerical results discussed in the following
sections, the iterative sequence is terminated once all diago-
nal entries of P and Q converge to within a given tolerance -
i.e., given ¢ > 0, solution of (103) and (104) is carried up to
k = kT(s), where
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The Lyapunov equations (103) and (104) are solved by the
real Schur vector approach following Kitagawa [21] while the
Riccati equations (106) are solved by the real Schur vector

technique of Laub [22].

The major computational burden in solving Lyapunov-type
equations is in reducing the stability matrix to real Schur
forms. Hence, computation is reduced by half when only one
reduction is used to solve (103.a) and (103.b) and one for
(104.a) and (104.b). Clearly, the solution sequence of (103)
and (104) also reduces storage requirements.

4.2 General Description of Design Studies

In the remainder of this report, we discuss application of
the stochastic design approach to various simple example prob-
lems. This is done mainly with a view toward illustrating the
improvement in robustness properties to be expected and the
qualitative form of the control, particularly for large levels

of modelled frequency uncertainty.

In all examples considered, the system retains the general
form of (87):

a X A -BK b 4 Wy
HE - = _ ~ + ~ (108)
a FC R’ -BK-FC q Fw,

except that
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} where Ae represents the elastic modes while A, now comprises both
% rigid body and unstable modes. Matrices B, C, K and F are as

y defined previously, and Wy and 52 are white noise processes with
intensity matrices vy and V,, respectively.

Uncertainty is modelled only in the open-loop frequencies

" associated with the elastic modes. It is assumed that open-loop
j} frequency deviations are normally distributed random variables.
- In consequence, if Tm denotes the decorrelation time correspond-
X ing to the mth elastic mode, then (32) yields:

& _ 7/ - =1

Tn = 7 (9 4y (110)

%

:

4

o where o  is the standard deviation of the m'" elastic mode fre-
- quency relative to its nominal value, Bﬁ. For illustrative pur-
é% poses, we adopt the simple model

;

¥

> = 001 (111)
> am (o] wm

3

ﬁ to reflect a degradation of structural modelling accuracy with
b increasing nominal modal frequency. Thus, in the following

. example problems, modal frequency uncertainty levels are

<1 uniquely defined by the relative standard deviation, o, of the
i first mode.
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Although second-mean stability is proved under the condi-

= tions stated in Theorem 7, it is desirable to demonstrate robust-
Eﬁ ness for specific designs by determining stability for a range of
» parameter variations.

i To this end, we conduct sensitivity studies as follows. For
j each compensator design (corresponding to particular nominal

E} 1 values and a value of ¢ in (111), we compute the closed-loop poles

for a set of perturbed system models obtained by replacing the

nominal value of the elastic mode dynamics matrix, Ke' by:

0 1
Ae(s) = block-diag —2 5 _ ] (112)
-wk(1+6) -anwk(l+6)

where a range of values of the relative frequency deviation, §,
are considered.

Obviously, since (112) implies a change in all modal fre-
quencies by a fixed percentage, robustness for independently
random frequency deviations cannot be established. However,
perturbations of the above form still provide a convenient and
practical means of illustrating relative stability for a sub-
class of the parameter uncertainties originally postulated.

Note also that (112) involves variation directly in the struc-
tural mode frequencies as opposed to parameter variations of the
form (10). Thus, although uncertainties in structural mode fre-
quencies are closely allied with open-loop frequency uncertain-
ties, unconditional stability under such perturbations may not
be expected and (112) provides a good test of the robustness
properties of the stochastic design.
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Further important features which we wish to illustrate in
the following are the progressive diagonalization of P and Q
with increasing uncertainty level and the concomittant reduction
of the controller form to rate output feedback in the case of
colocated actuators and sensors. To demonstrate diagonalization
of P and Q, we introduce the following measures of diagonal dom-
inance:

A %
P; = ZIPUI/‘PHPJJ) -1
(113)
A ¥ _
Q; = z|Q 1171944954
Clearly, Pi’ @:. 2 0, with equality if and only if the ith column

1

is zero except for the 1th

element.

4.3 Numerical Examples

The first two examples discussed here involve low-order
systems and are intended to illustrate the robustness properties
to be expected under the stochastic design approach. We partic-
ularly consider the effect of rigid body and unstable modes and
non-colocation of actuators and sensors. The last example dem-
onstrates the asymptotic properties of the control for large
uncertainty levels for a fairly high-order system.

A. Two Mass System

The two mass system shown in Figure 2 provides a simple
example to illustrate the relative stability of the stochastic
design approach. We assume a force actuator located on mass 1
and suppose that mass 2 is subjected to a white disturbance
force, w, of unit intensity. Also, for simplicity, m,, m, and k
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are set equal to unity. Ignoring damping for the moment, the
dynamic equations are:

ﬁl = -X + X, +u
(114)

It is desired to suppress the mean-square displacement of mass 2.
Thus, we choose:

= 2 2
Js = E[x2 + u”l] (115)

Finally, two cases of sensor location are considered:

non-colocation: y = X, + ;2
(116)
colocation: y = x; + 52

where 62 is observation noise of unit intensity. Note that in
both cases, displacement sensing is assumed.

Recasting this problem in the modal coordinate basis and
assuming 0.5 percent modal damping, the various matrices appear-
ing in (108) and characterizing the control formulation (88)-(90)
become:
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’ 0 1l 0 0 0.00
7 A= ° ° 9o 1,8 ]9 (117.a,b)
X 0 0 0 1 -0.17
5 0 0 -2 -0.014 0.17
' Non-colocation: € = [1, 0, -1, -1] a.
} (118)

. Colocation: c = [1, 0, 1, 1] b.
:
;;‘, 0 -1 -1
3
f =% ° % 0 , Ry = 1 (119.a,b)
N -1 0 1
21 -1 0 1 1
&
b
X 0.00 0.90 0.00 0.00
J 0- 00 0. 08 O- 03 -0. 03
4
¢
S These relations define the nominal system model. Uncertainty
- in the single open-loop elastic mode frequency present in this
L. problem is modelled as in (110) and (11l1l) with o denoting the
‘ standard deviation relative to the nominal frequency w = V2 .
% M Under the above assumptions, we now discuss the non-

colocated and colocated sensor cases separately as follows:
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A.l Sensor at Mass 2 (Non-Colocation)

Using (103)-(106) we first generated three designs corre-
sponding to uncertainty levels o = 0.0, 0.5 and 1.0. For each
such design, closed loop poles were computed for modal frequency
perturbations of the form (112), with § varying over the range
$0.90. Note that since there is only one elastic mode, such
root-loci fully characterize robustness under modal frequency
uncertainties.

The root-loci are shown in Figures 3, 4 and 5, where pole
locations for the nominal system are indicated by solid dots.
The deterministic plant, LQG design (o = 0) shown in Figure 3 is
unstable for frequency variations § = -0.22 to -0.90 and
§ = 0.10 to 0.50. It is seen that the nominal system poles at
-0.2 tl1.4i, corresponding to compensator poles, tend to push the
closed-loop elastic mode into the right half plane. 1In contrast,
the stochastic design with ¢ = 0.5 (Figure 4) places these
offending poles at -1.1 $1.5i (for the nominal system), thereby
minimizing their effect on the elastic mode. This stabilizes the
‘design for positive frequency variations but the system is still
unstable for variations with 6 = -0.25 to -0.9. When the model-
led uncertainty level is increased further (¢ = 1.0, Figure 5),
an increased stability margin is achieved for positive frequency
variations but the unstable region for negative variations
remains virtually unchanged.

A.2 Sensor at Mass 1 (Colocation)

Here, we again consider three designs corresponding to
=0, o= 0.5 and ¢ = 1.0, and plot the root-loci for varia-
tions of § from -0.9 to +0.9. The results are shown in Figures
6, 7 and 8. In this case, the deterministic design (Figure 6)
is unstable for variations § = -0.15 to ~-0.60 and for § 2 0.30.

68




3.0

rllt|llll]rltl]lrlT[Tlrl rrrT

L

L. [120841-N _
— -
2.6 ~ @ NOMINAL SYSTEM (6 = 0) =
pey 0 ™ —
i [ © PERTURBED CASES (5 ¢ [-0.9, 0.9]) N
;:4,; - o -
20— —
% - - _J
3 § B oD -
kS > —
: g 15 ]
- 2 — -
: T] — ~
- < - —
s L[ -
1.0 |~ —
— -—
3 - Z
! N i
: 0.5 . m -
) F mw _
p— —4
i - -1
$ u ‘ -
A ol t vl b vty a s taaraliaag
3 2.8 -2.0 1.6 -1.0 -0.5 0 0.5
) REAL
. TWO-MASS SYSTEM SENSOR AT MASS 2
.
;T Fig. 3 Closed-loop poles for two mass system,
* non-colocated case, ¢ = 0
3
k]
A
.‘i
; 69
‘
)
3

el §

AR

2 T A A KSR O
. B . . R

Mt B B e B A




IMAGINARY PART

3.0

2.0

1.8

1.0

0.5

120842-N

. ® NOMINAL SYSTEM (5 = 0)

O PERTURBED CASES (5 ¢ [-0.9, 0.9))

P

N

TT T T[T T T T [ TP T T[T T T T[T T T I 1711

TFI[IIIT]IIIT]IIITIITII LI

Lidtdra el et e b el v oy bt

Lidrda by be iy b vl
-2.5° -2.0 -1.6 -1.0 -0.6 0 0.5
' REAL

TWO-MASS SYSTEM SENSOR AT MASS 2

Fig. 4 Closed-loop poles for two mass system,
non-colocated case, ¢ = (.5




T T e T o T N T R TR T T T T s e T B R G R SR e o e s
'_‘
2N O T T T [TT T T T T T T[T T T T[T TT I [TTTT1]
o | Ti20843N -
.‘;_: e —
25|~ @ NOMINAL SYSTEM (5 = 0) _
§ . o PERTURBED CASES (5 ¢ [-0.9, 0.9]) _
- ]
l‘\; = -
i 20 — ]
& - - -
:; 5 - ——
A > .
a 5 1.6 |— ) —
. 2 — =
k' b= - —
L)
.i < p— ad
“‘"i g = ]
% 1.0 p— -
:;{ 05 }— ﬁ —
= C &, .
p— o -
NIRRT
-2.8 -2.0 -1.5 -1.0 -0.5 o 0.5
_ REAL
,3 . TWO-MASS SYSTEM SENSOR AT MASS 2
~
g . Fig. 5 Closed-loop poles for two mass system,
- non-colocated case, ¢ = 1,0
7
-]
¥
k.
¥
i
% 71
‘.q“.




L3 3OFTTT V[T T TV [TT TV [TTTT VT TT [T 1]
- 120844-N
X

1
1

o 26 @ NOMINAL SYSTEM (5 = 0)

0 PERTURBED CASES (6 ¢ [-0.9, 0.9])
2.0
DOUBLE POLES

1.5

IMAGINARY PART

1.0

0.6

rrrrprrrrprrrrypyerrprrvrgprey

oo Lo g g Lo g o sl eraabaagslong

oot o Lo v e beasaly g
25 -2.0 -1.6 -1.0 -0.5 0

o
o

: REAL

’; TWO-MASS SYSTEM SENSOR AT MASS 1
2 '
'.f,} Fig. 6 Closed-loop poles for two mass system,

colocated case, ¢ = 0.0

» ‘ 4";.

g

AR

72

e Py

.. B’y g

S

iA
. of
a

. - -
.......................... oL . . - T T
* [ N N AL N a2t te DA T R - " - Ao e = [ .-
Iy . g v PR P WA VP DS W PR WG W . W W




i

.‘.
Lo
.
~
~
.

o
- 18

150"

;
:

M

CLYRHM I+

IMAGINARY PART

3.0

2.5

2.0

1.5

1.0

0.5

lll[llllllllllllTllrllfl LI

@ NOMINAL SYSTEM (6 = 0)

T
-

o PERTURBED CASES (5 ¢ [-0.9, 0.9])

SRS N SN T W

TTIT[T I T T [TVI T[T T 7T ITTTITIT

W A NI I A AP d

.5 -2.0 -1.56 -1.0 -0.5 0

REAL
TWO-MASS SYSTEM SENSOR AT MASS 1

|

N
o
o

Fig. 7 Closed-loop poles for two mass system,
colocated case, ¢ = 0.5

73

R . AP TGN T N S - W W S G P

3k PR ‘...i.‘_l




N A A A AR A s A el S/ AgURAC AC AL L S R e et i S A S SN M A A R o R
s
'3
¥
¢ ofFrrrvryrTITYTrrrryrrvrryrorery TV 1V
X -
g 120846-N -
- -
25—~ @ NOMINAL SYSTEM (6 = 0) -
K o =
& — o PERTURBED CASES (5 ¢ [-0.9, 0.9)) -
p— -
20— - ]
e F -
= |k -
> e j
¥ % 15 -
< = -
k a e -
A < p— -
E 2 — -
£ 10— -
b o -
N b —
4 - -
%’é 0.5 — -
; - r ]
v
: oCuia oo v oo o Loy ol gpWogotral o]
by 0o¢
% -2.8 -2.0 -1.6 -1.0 -0.5 0 0.5
- REAL
TWO-MASS SYSTEM SENSOR AT MASS 1
Fig. 8 Closed-loop poles for two mass system,
| colocated case, o0 = 1.0
$ 74
0
*
d
A B &, Y At e b Aot J.




......................

On the other hand, the stochastic design for ¢ = 0.5 (Figure 7)
is unstable only for § > 0.70. This stability region is still
further extended to 6 < 0.90 by increasing o to 1.0 (Figure 8).
Thus, it is seen that with sensor/actuator colocation, the
stochastic design can extend the stability region for both posi-
tive and negative frequency variations. Overall stability char-
acteristics may be shown as in Figure 9, where we have combined
the previous results with design results corresponding to addi-
tional values of o. This figure shows the stability region
(unshaded area) in the §-0 plane. It is clear that by increas-
ing the level of modelled uncertainty in the stochastic design

we may progressively enlarge the stability region.

Summary: Note that despite the presence of a rigid body mode
(the effects of which were not explicitly treated in the preced-
ing theoretical developments), no difficulties were experienced
with the convergence of (103)-(106). Although increase of the
modelled uncertainty level in the non-colocated sensor case does
progressively increase the overall region of stability, the
stability boundary for negative frequency deviations is not
appreciably affected for large uncertainty levels. This reflects
an inherent limitation in non-colocated systems in the presence
of rigid body modes. On the other hand, in the colocated senso:r
case, as Figuie 9 demonstrates, the region of stable frequency
deviations increases approximately in proportion to the modelled
uncertainty level. Thus, it appears that by modelling the fre-
quency uncertainty with sufficient conservatism, an arbitrarily
large stability margin may be secured.
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B. Inverted Pendulum

To illustrate the effect of unstable modes, closed-loop con-
trol of an inverted pendulum, shown in Figure 10, is investigated.
This system was previously considered by Martin [23] and consists
of a flexible beam column pinned to a motorized cart. The beam
acts as an inverted pendulum which can be stabilized by acceler-
ating the cart horizontally with input force u. Measurements of
the cart position and the slope of the beam at its base are

assumed available.

The system model, including all relevant nominal system
parameters are those given by Martin [23] and need not be
repeated here. It suffices to note, however, that the model
encompasses one rigid body mode, one unstable mode and two
elastic modes. The unstable mode frequency is $3.22 rad/sec
while the first two bending mode frequencies are 3.055 and
22.05 rad/sec. The inherent damping factor for the bending
modes is assumed to be 0.005. Finally, the state weighting

matrix is diagonal:

R, = diag [0.00l1, O, 0.4, 0.1, O, 0.1, O] (121)

Uncertainties only in the bending mode frequencies are con-
sidered here and these are modelled in accordance with (110) and
(111).

With these assumptions, three designs were computed corre-
sponding to 0 = 0, 0.2 and 0.5, where o is the first elastic
mode standard deviation. Root-loci for elastic mode frequency
deviations of the form (112) with 8§ in the range $0.30 are
shown in Figures 11 through 13. Notice that, in the deterministic
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design (0 = 0, Figure 1ll), both bending modes become unstable
for |§| > 0.03. 1Increase of the modelled uncertainty to o = 0.2
(Figure 12) pushes the compensator poles deeper into the left
half plane and dramatically increases the stability region to

3§ €[-0.09, 0.29]. A still larger value of o (o0 = 0.5, Figure 13)
completely stabilizes the second bending mode over the range of
frequency deviations considered. On the other hand, while the
first bending mode is also stabilized for all positive frequency
variations, it becomes unstable for § < -0.1l. 1In other words,

increasingly large leve.s of modelled uncertainty result in
relatively minor increases in the stability margin for negative

frequency variations.

Summary: Although the theoretical developments of earlier
chapters assumed a stable open-loop system, the computational
scheme of (103)~-(106) converged without difficulty in this case
to produce stable, robust designs.  However, the above results
do indicate that the presence of an unstable mode limits the
ability of the stochastic design approach to improve the stabil-
ity margin for negative frequency deviations - particularly for
the elastic mode in closest proximity to the unstable mode. 1In
part, this may be ascribed to the fact that in modelling uncer-
tainty only in the elastic modal frequencies we ignore the influ-
ence of such uncertainties on the unstable mode so that robust-
ness improvement is mainly restricted to those modes (i.e., the
second bending mode, in this case) which are accurately repre-
sented'in the stochastic design model. Nevertheless, the
stochastic design approach yields an enormous enlargement of the
stability region over that obtained by the conventional LQG
design.
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o c. Simply Supported Beam
-4 Here we consider a simply-supported Bernoulli-Euler beam
¥ with normalized span-wise coordinate as shown in Figure 14. A
- force actuator and colocated rate sensor are assumed at

£ = Ea = 2/43. The nominal system dynamics matrix in the modal
fﬁ coordinate basis is block-diagonal with diagonal blocks of the
-3 form (3). With appropriate non-dimensionalization of the equa-
5 tions of motion, we may write:

- 2
wk=k ; k=1,...,n (122)

;ﬁ Furthermore, we set:
n, = 0.005 , ¥k (123)
W and B and C assume the form:
5
3 2
3 B - CT R nx1l
X
N
i k Ui :
-» - - 1 o
- Bkl = k(1 + (-1)") sin 2 k (1 + ga) (124)
g k = 1,...,2n
o
& For this example, an "energy" state weighting is chosen:
2
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@ 0
R, = block~diag (125)
k=l'...'n o 1

and we suppose the beam to be excited by & spatially and tempo-

?@ rally white disturbance force with unit intensity, i.e.,:
. 0 o
vV, = block-diag (126)
k=1,...,n 0 1l

Tz Since only one actuator and sensor are used, R2 and V2 are
QA positive scalars which we denote by Py and Por respectively.
?; As before, open-loop frequency uncertainties are modelled
s according to (110) and (11l1l) so that uncertainty levels are com-
s pletely specified by the standard deviation, o, of the first mode.
%% Clearly, (111) also entails a fairly rapid increase of uncer-
i:) tainty level with increasing modal order.
Under the above conditions, stochastic designs were com-
ﬁg puted for a range of values of o, Py and Py+ For each such
ﬁ? design, root-loci were determined for system perturbations of

the form (112). It suffices to note that both stochastic and

e

LA

- deterministic designs were stable for all frequency variations
ﬁg . considered. Thus, improvement in rohustness is not an important
%% issue in this example problem.

?, . What this example shows most clearly is the distinctive

f: form of the control provided by the stochastic approach.

%ﬁ Figures 15 through 20 contrast the deterministic design (o = 0)
ég' with a stochastic design (o = 0.2), both with p_ = 0.1 and

f% Po = 0.1 and 15 modes retained in the design model.
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Figures 15 and 16 show the diagonal dominance indicators

defined by (113). Recall that Pk' Qk
diagonal element of the kth row of P and Q, respectively, are

Py
Ot

v

= 0 implies that only the

A YA
AN
PIST Sy i

non-zero. Consequently, the results for the stochastic design
show that except for the sub-blocks corresponding to the first
1A ~8 modes, P and Q are nearly diagonal. In contrast, the indi-

"
»
- a

L3
)

A

cators P, and Qi for the deterministic design remain signifi-
. cantly above zero for all modes considered.

Diagonalization of P and Q in the stochastic design results
in suppression of displacement loops as can be seen from the
regulator and observer gains displayed in Figures 17-20. While
regulator position gains increase with modal order in the deter-
ministic design (Figure 17), the stochastic position gains are
negligible beyond the 8th mode. At the same time, velocity
o gains (Figure 18) are nearly the same in both designs. The same

3 general tendencies can be seen for the observer gains (Figures
19 and 20). Thus, displacement loops are almost completely
suppressed for the higher-order, relatively more uncertain modes
and the solution for the corresponding portions of P and Q
reduces to the asymptotic forms given by Theorem 8.

It should also be noted from Figures 17-20 that gains for
the first three modes (corresponding to more than 20% closed-loop
damping for these modes) are nearly tﬁe same for both determinis-
tic and stochastic designs. This indicates a region of "quasi-

deterministic"” control for low order modes.

I Summary: This case conforms to the conditions assumed in the
theorems of Chapter 3 and it is no surprise that robust stability

<

is readily achieved. Moreover, it is evident that the stochasti-
cally designed control for modes beyond the 8th closely approxi-
mates the asymptotic form given by Theorem 8 and Lemma 8. 1In
fact, since the asymptotic control is rapidly approached with
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increasing modal order, (93) may be used to determine the gains
for as many modes beyond the 15th as desired with no significant
computational burden. Because of the properties noted above for
the control of low-order modes, we may say in summary that the
stochastic design approach automatically produces a high author-
ity, essentially deterministic design for low-order, well-known

. modes and a low authority, rate output feedback control for high-
order, very uncertain modes. These two regimes are seen to exist

" as limiting qualitative features of a unified, globally stable
design.
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5. CONCLUSION

In the foregoing developments, the minimum information
approach to the modelling of uncertain structural systems has
been applied to the mean-square optimal design of full-order
dynamic compensation. It was seen that judicious choice of the
compensator dynamics matrix permits the optimality conditions
to be reduced to relatively simple forms. Under fairly mild
restrictions, these optimality conditions were shown to possess
unique solutions for which closed-loop stochastic stability is
quaranteed. Furthermore, the control reduces to a simple,
inherently robust asymptotic form for sufficiently high levels
of modelled uncertainty.

A simple, straightforward computational scheme was devised
for numerical solution of the optimality conditions. The first
two numerical examples considered in the last chapter not only
show this algorithm capable of handling rigid body and open-loop
unstable modes but also suggest that the conditions assumed in
the existence and uniqueness result of Chapter 3 can be consid-
erably relaxed. Moreover, these example problems show that the
stochastic design approach can enormously increase stability
margins over what can be achieved by a conventional, LQG design.

Furthermore, the last numerical example discussed in
Section 4.3 suggests that when reciprocal decorrelation times
increase monotonically with modal order, closed-loop modes may
be divided into two qualitative regimes: the "coherent" and
"incoherent" systems (to use the terms introduced in Ref. [7]).
Incoherent modes are associated with great a priori uncertainty
and are mutually uncorrelated and uncorrelated with the coherent
system composed of low-order, relatively well-known modes. Since
the mean-square optimal control for the incoherent system is
known in advance (by virtue of Theorem 8 and expressions (93)),
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these qualitative features permit the solution of (89) and (90)
for very high-order systems by combination of (93) with the solu-
tion of the reduced-order forms of (89) and (90) for the coher-
ent system.

Such a scheme would reduce the computational burden to that
associated with the relatively few well-known modes. Of course,
this would obviate the difficulties of design computation but not
of implementation. Although the asymptotic form of control for
the incoherent system approximates a rate output feedback law,
thereby aiding practical implementation, a completely satisfac-
tory treatment must await the extension of the stochastic design
approach to fixed-order dynamic compensation.
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'7 APPENDIX 1
T
?
? Proof of Theorem 4
: First, we write (46.c) and (49) in accordance with the state
&

transformation (50). Using (51), and the notation:

>

Eﬁ -8k ~fy -a (A.1.1)

L e Do Se e im e S

equations (46.c) and (49.a) yield

FePSEW L 56T

& = -— - H ~ + H~H + ~ -— _ ~
i 0 (up,=BK) P+ ¢ qu Pg(“m Bk) + quc a.
X
x +r, +BRc+ 7B +F +588 4+ 5
k4 1 2 £ Eq €q q
; - H = Hy ~ ~
§ 0 (um Bx) qu + z Pq + PEBK + qu(BK + a) b. (A.1.2)
7
g - KHRZK
0 = P + + P + + .
K B £q (Bx a) q PEqBK Pq(BK + a) c
+ KHRZK

(P A ARSI R L

e ’
s I FOFLN
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0 = (ﬁh-BK) 55 + enﬁgq + Gg(ih'BK)H
~ H H ~
+ QEQK B + I{QE} + vy
- = ~ ~ H = H
0 = (um-BK) ng + Bk Qq + QEC + ng(a + Bk)

0 = Cagq + (a + Bk) 5q + Ggqcn + aq(a + gyl

+ 1{65} +v, +f vsz

and (49.b,c) become:

~ ~ ~H ~
K(QE—QEq ng + Qq)
_ -1 H ~ ~ -~ ~ ~H -~
Paf = [PggQp *+ Pl v V3

while the identity, (49.d), assumes the form:

"~

~H x ~ ~H _
Peq(Qeq Q) * Pql@Qgy) = O
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Now taking { = 0 (i.e., choosing a as in (53)), we show that
(54) through (57) identically satisfy (A.l.2) through (A.l1.6).

First note that with qu = 0, (A.l.6) becomes
~ ~ ~H
P - =
q'9% "%’ 0

which is identically satisfied by (54.b). With (54), (A.l.4) and
(A.1.5) assume the forms

e -RyM6% Byl (@, -G) = o

£ q

-1

21 = 0

~ ~H
P _[f -
q[ QqY v

and these are satisfied by (55). By virtue of (55.b), it is
readily checked that with ¢z = 0, (A.1.3.b) and (A.l.3.c) yield
Q = Qg in accordance with (54.b). Thus, ng and equation
(A.1.3) need not be considered further. Moreover, with (54.a)
and (55.a), (A.l.2.b) becomes:

which is satisfied if 7 vanishes.
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In consequence, only (A.l.2.a), (A.l.2.c), (A.l.3.a) and
(A.1.3.c) remain for consideration. With £ = 0 and (54) these

equations become (56) and (57).

Thus, Egs.

(54) through (57) identically satisfy the sta-

tionary conditions (46.c) and (49).
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- APPENDIX 2
B 3"‘3
’:j Proof of Theorem 5
;j Since only elastic modes are considered and n, > 0 for all
: k, it follows that (i,ék) is stabilizable and (r?,ﬁ) is detect-
'{% able. As P is presumed to exist as a positive semi-definite
i matrix, ((r, + 7%, W) is also detectable by Theorem 3.6 of
(3 Ref. [20]. 1In other words (62.a) assumes the form of the
R,
stochastic Riccati equation for the regulator problem:

3
T = TH " -
e 0 P +Pu + I{P} +s -P o P

s A
b s = ry+I{P} 20

5 (A.2.1)
(u, o) stabilizable

.
p]

23

. (58’3) detectable

Then by virtue of Theorem 12 of Ref. [7], W -0OP is asymptotically

ﬁé stable. But -I/2 is non-positive and diagonal so that ﬁh -oP is
}2 also asymptotically stable. Analogous reasoning for (62.b)

§§ establishes the asserted stability properties of (u -Q o) and

-— (W, -Q ©) and completes the proof of part A.

G Congider system (58) in the absence of disturbance and

i observation noise:
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ug -Bkq

JYYe
]

} (A.2.2)
(ﬁh -8k)q + £Y(E-q)

Qe
L}

with x and £ given by (6l1). To prove part B we show exponential
asymptotic stability of the second moment response of this system.
Partitioning the second moment matrix of (g) in accordance with

(48), so that

g Q o]
0 & E [( )(EH. qH)] = [ g Eq] (A.2.3)
d QEq Qq

the Lyapunov equation for Q yields:

2 - _ H —-H _ H_H N
A = I - H:-H = _ - H
ng “mQEq Bk Qq + QEY £+ ng(um fy =-Bk) b. (A.2.4)
: _ = o fu_ H H_H = e H
Qq = fy ng + (um £y BK)Qq + QEqY £+ Qq(um £y-8«k) c.
Alternately, letting:
N Q 9
g & [~§ Eq‘ = 79T (A.2.5)
Q Q
Eq q
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A with T defined by (50), we have:

e

=

e é = (W-Bk)Q,+ BxQT + O (4 = BK) By o, M+ 148,y a.

w m 3 g % £q” 3

- o:a _ - _ ~ ~ ~ f— - H .~

7&- ng = (um BK)QEq + BKQq + ng(um fy)  + I{Qg} b. (A.2.6)
X S (T _fn8 4+ 8 (5 _gnH ~

¥ Qp = (p=fVIQ, + O, Cup=fW™ + I{Q,} c.

g
’
T

R

:’A"‘: :-"': N
L LA

Assuming P and P to be positive semi-definite solutions to

(62) and (63), consider the non-negative quantity:

~

-\: A P 0 ~ |
;j £ = tr [ A ] Q (a.2.7)
AN 0 P

53 Use of (62.a), (63.a) and (A.2.7) yields:

o

= : . g & 1

7 £ = -tr(@,r, + (1,,-1, 1| % 5q 2n{p 5 p)

PR £°1 2n 2n Q 6 -1

3 £q q 2n (A.2.8)
- = <

oy = -tr[QEr1 + Qq P o P] 0

Ny

»

<

T where the last line follows from (A.2.5). Since Q P oP is >
fﬁ simply EIQﬂK R,Kkq], we conclude from (A.2.8) that for all

§ QQ 4 Q(t=0) 2 0, Bkqg converges exponentially to zero in the

2] mean-square as t increases without bound. Furthermore:
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I(BKng)kjl < ((E(an gkt (E(E gH))jj) (A.2.9)

; - « —H :
In view of (A.2.9) and because AQEIUmQE + Qg T I{Qg}] is

asymptotically stable (see proof of Theorem 8, Ref. [7]),

~

(A.2.4.a) shows that QE = QE must converge exponentially to zero.

Now consider (A.2.6.b,c). The term I{ag} in (A.2.6.c) con-
verges exponentially to zero while (ﬁh-fy) is asymptotically

A

stable. Thus, the solution, 6 of (A.2.6.c) converges exponen-
- tially. Since both (ﬁh-BK) and (ﬁﬁ-fY) are asymptgtically stable,
¥ similar reasoning applied to (A.2.6.b) shows that ng also con-
verges exponentially. Consequently, all elements of Q converge
exponentially to zero as t increases without bound and system
(A.2.2) is second mean stable. Almost sure exponential stability
is then directly implied.

Finally, since (6l1) through (63) imply the stationary con-
dition and the control given by (61) is admissible, the conclu-

s

sion of part C follows by Lemma 2.
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APPENDIX 3

As a preliminary step to the proof of Theorem 6 we show:

Lemma A.3.1

Under the conditions of Theorem 6 suppose that Pi’ Qi > 0.
Then:

(ﬁﬁ,os) ’ (ﬁh,v?) controllable
(r3 ) (?JJs ) reconstructible
1’"m ' ' m
and
((PioPi)a, Eﬁ-QiE) reconstructible
- _ - 2 X
(um oP., (QioQi) ) controllable
Proof

(7,07 is controllable if and only if (see Ref. [20], p. 45)

rank [up =A1, o%] = 2n

for all )\ defined on the spectrum of u. Since u and I are both
diagonal and the modal frequencies, w

K’ k=1,...,n are assumed
distinct, this implies:

rank [iﬁ -1, 08] = 2n
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for all A on the spectrum of ﬁh. Therefore (U ,ok) is control-

T, My Y

lable. The stated conclusions for ( m' V1 (rl,ﬁﬁ) and (o ,ﬁh)
can be shown in a similar manner.

Now consider the matrix [E: -Al,PiB] with A on the spectrum

of ﬁ:. Writing this in the modal coordinate basis (in which the

0 1l
nominal system map, U, has the matrix block-diag -2 _ ))
. —H - -2n Wy
and noting that (u ,B) is k k

controllable, it is seen that the rank of [EH -xl,PiB] is less

’
than 2n only if B is orthogonal to more than one row of Pi‘ But
since P, >0 this is impossible. Thus.

rank [i;“ -1, P, B] = 2n

for all ) on the spectrum of ﬁ:. This implies:

2n-1
k=0

where p denotes the image of PiB. In consequence, denoting the
image of yH by G:

2n-1 2n-1 2n-2
—H — .k —H k —H, k
k§o (up -0Q)"p = §0 () P + §0 (uy) 6
= CZn
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i.e., (i: -abi,PiB) is controllable. Since Rz > 0 this means
(ﬁ: -EOi,(PioPif’) is also controllable. Therefore

((Piopi) ,ﬁh—QiF) is reconstructible. 1In exactly analogous
fashion, (ﬁﬁ'°Pi'(Qiabi)k) may be shown to be controllable.

The following helps to show that all members of the
sequences defined by (67) and (68) can be made positive definite:

Lemma A.3.2

Under the conditions of Theorem 6, ﬁo > 0 and 60 >0
together with (67) and (68) imply:

Pi' Qi >0 ; 120

(umfoPi) & (umfoic) stable , i =2 0

~ A

Pi,Qi>0;iZI

Proof

Suppose that ; > 0 and 51 > 0. Then Ey Theorem 3.6 of
Ref. [20} ((ry + I{ i})”,ﬁ) and (i,(v1 + I{Qi})k) are recon-
structible and controllable, respectively. By virtue of Lemma 6
and (67), P, and Q; are positive definite and (ﬁh-opi) and
(u -Q;0) are asymptotically stable.

Now P., ai > 0 implies ((Piapi)%,ﬁﬁ-oi?) reconstructible
and (Fg-aPi,(QiEOi) ) controllable by the previous Lemma. Thus,
by virtue of Lemma 4.A and (68), P;,1 and Q;,] are positive defi-
nite. The stated conclusion then follows by induction on i. g

106

..................

- - . - . - - - - . .
PO K e AT e e T R A I
VT P IS W S L I L ST, K Sk A L N,




...................

S'!‘ b 3 - L - - - A e A T e e e e S T
N
L8
by
."
s
o
&
i As a final preliminary step, we specifically establish
25 I quantities which will serve as upper and lower bounds for the
-.'?3 sequences defined by (67) and (68).
".:
Lemma A.3.3
4 ca s . u Su %u u . .
74 Positive definite P, P, Q , Q are uniquely defined by:
?.:a .
e
o, _ Su-— —HZu u_u
7 : O—Pum+um1> + P OP a.
33 (A.3.1)
0 = WY + U, + ry + I{p%} + 1{P"} -PY0P" b.
T
7 0 = o + F,0" + o“Go" a.
-§‘ } (A.3.2)
0 = 70" + o' + v, + r{Q"} + r{o"} -o"" b.
§
\’ . Likewise, the equations:
0 = p*(m -0"% + (i -0 et + plop’ a.
} (A.3.3)
0= E:PR' + P"Em +r) o+ I{p"} -p"cp" b.
, 0 = Q¥ -oe™® + (i -oph0* + o'G0* a.
} (A. 3.4)
- 2-H L =2
:,;; 0 =10 +Qum+v1+I{Q}-QoQ b.
«’il
Pt 1
2
Ay,
Iyt
F5
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uniquely define positive definite P, Pz, Q and Qz with:

Pz < Pu , Pz < Pu

} (A.3.5)

o* <o, ot < o

Moreover, (E#—Quﬁ), (ﬁh—Q”E), (ﬁh-opu) and (ﬁh-o?z) are stable.

Proof

First consider (A.3.l1). From (A.3.l.a) and the assumption
Ag(u) < 0:

I{?%} < (p%0P"}
Then, by Lemma 6 and (A.3.1.b) it follows that P s P* where:

0= iﬁ?* + p*iﬁ + ry + I{p*} + {p*oP*} -p*op* (A.3.6)
ﬁeﬁce the diagonal portion of P* satisfies:

0 = WH{R*} + {P*)T + {r;)
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As A (u) <0, {r } 2 0, this uniquely defines 0 < {P*} < >,
Slnce P* is hermltian, it follows that P* and hence P is bounded.
Likewise, from (A.3.1l.a), PY is bounded and positive definite.

With the aid of Lemmas 4 and 6, the sequences P? and Pg
(i 2 0) defined by

_ fu = —H u u__u
0 = Py,i¥p * ¥pPisy + P;OP;
- =Hpu u— u_, Ju; _pu_pu
0 "mpi + Pium +ry + I{Pi + Pi} PioPi (a.3.7)
“u
Po = 0

may be shown to be positive definite, monotone nondecreasing and,
by the previous argument, bounded from above. Use of Lemma 3
then implies that (A.3.1) possesses positive éefinite soluEions
for P" and Su. To show unigqueness, let (Pg, P?) and (Pg, P;) be
two sets of solutions. Manipulation of (A.3.1l) produces:

= TH o
0 = wz+3zu + I{z}
where Z denotes (P Pg -Pg -Pu) It is easily seen that

Az[u 2 + Zu + I{Z}] is asymptotlcally stable, whence 2 = 0
uniquely by Lemma 5. Thus PY + PY in unique, and (A.3.l.b)
assumes the form:
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—H u u— u_,u
0 umP + P by + 4y -P oP

~ A rrall ~u
r, = r, ¢+ I{fp " + P} 20

where ;1 is uniquely defined and (f?, ﬁh) is reconstructible.
In consequence, the above Riccati equation uniquely defines pY
as a positive definite matrix.

Thus (A.3.l1l) possesses unique positive definite solutions
for P and ;u. Moreover, application of Lemma 6 shows that
(ﬁh -oPY) is asymptotically stable. The stated results for
(A.3.2) follow analogously.

Finally corsider (A.3.3). Application of Lemma 6 to
(A.3.3.b) and Lemmas 4 and A.3.1 to (A.3.3.a) suffice to show
the existence and uniqueness of positive definite solutions and
the stability of (u_-oP%). The results for (a.3.4) follow
similarly.

Note that since ;u > 0, comparison of (A.3.l1l.b) and
(A.3.3.b) yields p* < pY by Lemma 6. In consequence, use of
Lemma 4 on (A.3.1.a) and (A.3.3.a) suffices to show P* < pY.
Analogous proof of the remaining properties, (aA.3.5), is
straightforward. |

Now we are in a position to prove Theorem 6.

Proof of Theorem 6

Suppose that

(A.3.8)
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From the previous Lemma Pz > 0 so that Pi > 0 by Lemma A.3.2.

Hence, Lemma 6 and comparison of (A.3.3.b) and (67.a) yields:

Similarly:

~

Also, since Qi < Qu, it follows that

from Lemma 6 and comparison of (A.3.4.b) and (67.b). Similarly,
P, s P

Manipulation of (68.a) and (A.3.3.a) gives:

0 = (B, -PY (H,-e"%) + (i -0"a)" (p,,, -PH
(A.3.9)

+ (Pi -P") ¢o (Pi -P”) + S

where

111

........




hd L
A T T ¥ b e e e N N e T e e e S

Ening s 4

»

N e 2

~ u _ — u ~
S é Pi+1 (Q -Qi) o+ 0 (Q -Qi) Pi"’l
(a.3.10)

L 2
+ P O‘Pi + PiOP

Now QY -Q; 2 0 and ¢ 2 0 and, 51nce P i+l > 0 by Lemma A.3 3,
the positive seml-deflnlteness of [P1+1(Q -Q; )o + o(Q -Ql)P1+1]
follows by use of Lemma 4. Similarly, (P oP, + P,OP ) 2 0 so
that S =2 0. Also, because P -Pz > 0, (((P -Pz)o(P -P 2)#

-Q o) is reconstructible by Lemma A.3. l. Then, sxnce

W,V 4]
ML) el

¢
b
b

(um -Q 0) is asymptotically stable, Lemma 4.A gives

bad ~ Az
Piy1 > F
"
:
ﬁ Repetltlon of the same sort of argument yields
Qi+1 > Ql, P1+1 < P and Q < Q In summary, we have shown

that (A.3.8) implies:

AN IR

L u L u
% P” <P, s P r Q7 <Q; 5 Q
2 A!' A Au Az A I\u
b P" <Pjy SB Q7 <Q;,,, sQ
X
g

Induction on i completes the proof. 0 v
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